
 page 1 

Swept Sine Chirps for Measuring Impulse Response 
 

Ian H. Chan 
Design Engineer 

Stanford Research Systems, Inc.  
 

 
Log-sine chirp and variable speed chirp are two very useful test signals for 
measuring frequency response and impulse response. When generating pink 
spectra, these signals posses crest factors more than 6dB better than maximum-
length sequence. In addition, log-sine chirp separates distortion products from 
the linear response, enabling distortion-free impulse response measurements, 
and variable speed chirp offers flexibility because its frequency content can be 
customized while still maintaining a low crest factor. 

 
1. Introduction 
 
 Impulse response and, equivalently, frequency response measurements are fundamental to 
characterizing any audio device or audio environment. In principle, any stimulus signal that provides 
energy throughout the frequency range of interest can be used to make these measurements. In practice 
however, the choice of stimulus signal has important implications for the signal-to-noise ratio (SNR), 
distortion, and speed of the audio measurements. We describe two signals that are generated 
synchronously with FFT analyzers (chirp signals) that offer great SNR and distortion properties. They are 
the log-sine chirp and the variable speed chirp. The log-sine chirp has a naturally useful pink spectrum, 
and the unusual ability to separate non-linear (distortion) responses from the linear response [1,2]. The 
utility of variable speed chirp comes from its ability to reproduce an arbitrary target spectrum, all the while 
maintaining a low crest factor. Because these signals mimic sines that are swept in time, they are known 
generically as swept sine chirps. 
 
2. Why Swept Sine Chirps? 
 
 Most users are probably familiar with 
measuring frequency response at discrete 
frequencies. A sine signal is generated at one 
frequency, the response is measured at that 
frequency, and then the signal is changed to another 
frequency. Such measurements have very high 
signal-to-noise ratios because all the energy of the 
signal at any point in time is concentrated at one 
frequency. However, it can only manage 
measurement rates of a handful of frequencies per 
second at best. This technique is best suited to 
making measurements where very high SNR is 
needed, like acoustic measurements in noisy 
environments, or when measuring very low level 
signals, like distortion or filter stop-band 
performance. In contrast, broadband stimulus 
signals excite many frequencies all at once. A 32k 
sample signal, for example, generated at a sample 
rate of 64kHz can excite 16,000 different 
frequencies in only half a second. This results in 
much faster measurement rates, and while energy is 
more spread out than with a sine, in many situations 
the SNR is more than sufficient to enable good 
measurements of low level signals. We will show 
several such measurements in Section 5. 
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Figure 1. a) Close-up of an MLS signal showing the large 
excursions due to sudden transitions inherent in the signal. 
Crest factor is about 8dB instead of the theoretical 0dB. b) 
Three signals with pink spectra. From top to bottom, log-sine 
chirp, filtered MLS, and filtered Gaussian noise. The crest factor 
worsens from top to bottom. All signals have a peak amplitude 
of 1V. Signals offset for clarity. 
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A figure of merit that distinguishes different broadband stimulus signals is the crest factor, the 
ratio of the peak to RMS level of the signal. A signal with a low crest factor contains greater energy than a 
high crest factor signal with the same peak amplitude, so a low crest factor is desirable. Maximum-length 
sequence (MLS) theoretically fits the bill because it has a mathematical crest factor of 0dB, the lowest 
crest factor possible. However, in practice, the sharp transitions and bandwidth-limited reproduction of the 
signal result in a crest factor of about 8dB (Fig. 1a). Filtering MLS to obtain a more useful pink spectrum 
further increases the crest factor to 11-12dB. Noise is even worse. Gaussian noise has a crest factor of 
about 12dB (white spectrum), which increases to 14dB when pink-filtered.1 On the other hand, log-sine 
chirp has a measured crest factor of just 4dB (Fig. 1b), and has a naturally pink spectrum. The crest 
factor of variable speed chirp is similarly low, measuring 5dB for a pink target spectrum. These crest 
factors are 6-8dB better than that of pink-filtered MLS. That is, MLS needs to be played more than twice 
as loud as these chirps, or averaged more than four times as long at the same volume, for the same 
signal-to-noise ratio. 
 
3. Generating Swept Sine Chirps 
 
 Compounding the low crest factor 
advantage are the unique properties of log-sine 
chirp to remove distortion, and variable speed chirp 
to produce an arbitrary spectrum. To understand 
how these properties come about requires a 
knowledge of how these signals are constructed. 
First up is the log-sine chirp. The log-sine chirp is 
essentially a sine wave whose frequency increases 
exponentially with time (e.g. doubles in frequency 
every 10ms). This is encapsulated by [2] 
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where 1f  is the starting frequency, 2f  the ending 
frequency, and T the duration of the chirp. This 
signal is shown in Figure 2. The explanation of its 
special property will come in Section 4, when the 
signal is analyzed. 
 

The variable speed chirp’s special property 
comes from the simple idea of using the speed of 
the sweep to control the frequency response [3]. The 
greater the desired response, the slower the sweep through that frequency (Fig. 3). To generate a 
variable speed chirp, it is easiest to go into the frequency domain. This entails specifying both the 
magnitude and phase of the signal, and then doing an inverse-FFT to obtain the desired time-domain 
signal. The magnitude of a variable speed chirp is simply that of the desired target frequency response 

)( fH user . The phase is a little trickier to specify. What we have to do is first specify the group delay of 

the signal Gτ , and then work out the phase from the group delay. The group delay for variable speed 
chirp is [3] 
 2
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1 True Gaussian noise has an infinite crest factor; the excursion of the noise here was limited to ±4s. 
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Figure 2. a) Power spectrum of a log-sine chirp signal. It is 
pink except at the lowest frequencies. b) Time record of a log-
sine chirp signal. The frequency of the signal increases 
exponentially before repeating itself. 
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That is, the group delay at f is the group delay at the 
previous frequency bin, plus an amount dependent 
on the magnitude-squared of the target response. 
The group delay at the first frequency bin is )( 1fGτ . 

The starting and ending group delays, )( 1fGτ  and 

)( 2fGτ , represent the start and stop times of the 
sweep respectively, and are specified by the user. 
They must fall within the time interval of the chirp T 
 Tff GG ≤<≤ )()(0 21 ττ . (4) 
Because the signal is generated in the frequency 
domain, the actual start and stop times will leak over 
a little in the time domain. Depending on your 
requirements, you may want to start the sweep a 
little after 0, and stop the sweep a little before T. 
Recalling that group delay 

df
fd

G f π
φτ 2

)()( −= , phase (in 

radians) can be obtained by integrating the group 
delay 
 ∫−= dfff G )(2)( τπφ . (5) 

This is best done numerically. 
 
4. Analysis of Swept Sine Chirps 
  

Swept-sine chirps are analyzed using two-
channel FFT techniques (Fig. 4) to determine the 
frequency response of the device under test (DUT),  
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where )( fY  is the FFT of the input 
channel, and )( fX  is the FFT of the 
reference channel. Division by the 
reference channel response (assuming it 
is non-zero) cancels out both the 
magnitude and phase irregularities 
present in the test signal.2 This 
automatically accounts for any intended or 
unintended non-flatness in the stimulus 
signal, as well as zeros out any group 
delay present. The impulse response of 
the DUT is then the inverse-FFT of 

)( fH DUT . 
 
 Now we can see how the log-sine chirp can create a distortion-free impulse response. The group 
delay of a log-sine chirp (which will be removed), is  
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2 It is also important that the FFT sees a consistent stimulus spectrum, especially if there are delays between reference and input 
channels. Using a noise-like stimulus that has inconsistent shot-to-shot spectra can result in unreliable measurements. 

 Impulse 
Response 

Reference Ch. 

Input Ch. 

Gated 
Response 

Generator 

DUT 

2ch. FFT 
Cross-

Spectrum 

Inverse 
FFT 

Time Gating FFT ETC 
Windowing +  
Calculation 

Inverse 
FFT 

Frequency 
Response 

Energy 
Time 
Curve 

Figure 4. Diagram illustrating signal flow in a 2-channel FFT measurement, 
such as found in the SR1 Audio Analyzer employed in this paper. Time 
gating and energy-time curve (ETC) computation are typically used in 
acoustic measurements. 
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Figure 3. a) Power spectrum of a variable speed chirp signal. 
In this example, the target EQ was that of USASI noise. b) 
Time record of the same variable speed chirp signal. The 
signal dwells at frequencies that have large emphasis, and 
speeds through frequencies with small emphasis, to achieve 
a low crest factor (4.4dB in this case). 
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This represents the time at which the (fundamental) frequency f is produced. The time at which the Nth 
harmonic, Nf , is produced is the time when the fundamental is 

N
f N . Thus, the group delay of the harmonic 

is 
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Following the two-channel FFT analysis, the group delay of the fundamental is zeroed out, meaning that 
the time delay at each frequency is subtracted according to (7). The group delay of the harmonics thus 
becomes 
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Note that it only depends on the order of the harmonic, N, but not at all on the frequency, Nf ! So after 
analysis, all frequencies arising from a particular harmonic order arrive at the same time, creating an 
impulse response that precedes the linear impulse response by a time GNτ∆  (Fig. 5a). This is quite a 

result, and is a property unique to the log-sine chirp. 
 
5. Examples of Swept Sine Measurements 
 

For the measurements made here, we employed our new SR1 Audio Analyzer. This analyzer 
includes both log-sine chirp and variable speed chirp generators, as well as a two-channel FFT analyzer 
(actually, it has two). In Figures 5 and 6, we use log-sine chirp to measure the behavior of an elliptical 
low-pass filter with a 6kHz cut-off frequency. Figure 5a shows the impulse response of the filter with the 
harmonic impulses neatly separated in time. In this example, 

1

2

f
f =4095 and T=128ms, and all the 

harmonic impulses are seen to arrive at their expected times. By time-gating the impulse response to 
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Figure 5. a) Measured electrical impulse response of an 
elliptical low-pass filter with log-sine chirp. The main response 
(which is distortion-free) occurs after t=0. The non-linear 
responses consist of peaks that precede the main response, 
with the higher-order responses occurring earlier. b) By gating 
the impulse response, we can examine the stop-band 
frequency response with distortion products (green), and 
without (blue). The intrusion of 2nd harmonic energy at -65dB 
up to twice the low-pass frequency is clear. 
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Figure 6. a) Second harmonic distortion of the elliptical low-
pass filter, as measured using a log-sine chirp (blue), and a 
conventional stepped sine sweep (red). Both measurements 
made referred to input. The log-sine chirp data tracks the 
conventional measurement very well down to about -100dB. 
b) Phase response of the second harmonic with the delay 
removed, as measured using a log-sine chirp. 
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include or exclude the distortion impulses, we obtain the stop-band frequency response of the DUT with 
or without distortion (Fig. 5b). The blue curve is the distortion-free frequency response of the filter, while 
the green curve includes the distortion components. The difference between the two curves is entirely 
because of distortion (predominantly second harmonic, as evidenced by the ~12kHz roll-off, which is 
twice the filter cut-off frequency). 
 

Now, each harmonic impulse response in Figure 5a captures the full behavior of the distortion 
product (amplitude and phase), and may be analyzed just like the linear response. In figure 6, the second 
harmonic impulse response is time-gated and analyzed (between -14ms and -4ms, with 5% raised cosine 
windowing applied to both ends).3 The admittedly unusual second harmonic distortion response tracks the 
results of a conventional stepped sine measurement closely, so this verifies that the distortion measured 
with log-sine chirp is accurate. Phase response of the second harmonic is shown in Figure 6b, after the 
constant delay has been removed. These measurements were averaged for less than a second (128ms 
chirp averaged 4 times). 
 
 Next we demonstrate using the 
variable speed chirp to make an acoustic 
measurement of a loudspeaker. Being 
able to tailor the frequency response of 
the test signal is often very useful. In this 
case, we chose a target EQ of USASI 
noise (Fig. 2a), which resembles the 
frequency spectrum of program material. We also 
chose it because power falls off below 100Hz, and 
due to time-gating, we did not expect meaningful 
data below a few hundred hertz anyway. The 
measurement setup used was similar to Figure 4, 
except that the driving amplifier output was fed into 
the reference channel of the SR1 Audio Analyzer 
(Fig. 7). Doing so removes the frequency response 
of the driving amplifier, leaving the measured 
response as that of the 2-way speaker (DUT) and 
the calibrated microphone. Power to the speaker 
was set at 2Vrms (1W into 4Ω), and the measurement 
microphone was placed about 10 feet away. 
 

Figure 8a shows part of the impulse 
response measured with the variable speed chirp. 
The main response begins at about 9.5ms, and the 
first echo follows about 2.5ms later. Figure 8b shows 
the quasi-anechoic response in blue (gated from 
8ms to 12ms, with 5% raised-cosine window at both 
ends) overlaid with the ungated frequency response 
in green. The time-gated frequency response is, of 
course, much smoother and more meaningful than 
the ungated response due to the exclusion of 
echoes. The gated impulse response and energy-
time curve (ETC) are shown in Figure 9. The ETC 
was computed using a half-Hann window [4], and is 
an indication of the energy response of the 
loudspeaker. Measurements here were averaged 
over about 2 seconds (512ms long chirp averaged 4 
times). 

                                                
3 When analyzing harmonic impulses, remember to divide the frequency axis by N. e.g. the response at 20kHz for a second 
harmonic impulse was generated by a fundamental at 10kHz. 
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Figure 8. a) Impulse response of a speaker measured with a 
variable speed chirp that had a target EQ of USASI noise to 
simulate program material. The impulse response starts at 
about 9.5ms due to the distance between the mic and the 
speaker. The first echo (reflection from floor) follows about 
2.5ms later. b) The raw frequency response of the speaker, 
including the echoes, is shown in green. The trace in blue is 
the gated, quasi-anechoic response, which shows a much 
smoother, meaningful response. The gating was applied 
between 8ms and 12ms, with a 5% raised-cosine window at 
both ends. Due to the first echo arriving just 2.5ms later, the 
response below about 400Hz is not accurate. 
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Figure 7. Modified signal flow, where the output of the power amplifier is 
fed into the reference channel. This removes the amplitude and phase 
imperfections of the amplifier from the measurement of the loudspeaker. 
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6. Conclusions 
 
 Both the log-sine chirp and variable speed 
chirp signals are powerful additions to the toolbox 
of the professional audio engineer. These signals 
can be used to make measurements very quickly 
compared to traditional stepped sine sweeps, and 
have crest factors significantly better than that of 
MLS. The log-sine chirp also has the unique 
advantage of being able to separate distortion 
response from linear response, while the variable 
speed chirp is able to generate a customized 
frequency spectrum at a low crest factor. The 
advantages of these signals were demonstrated in 
real-world test situations using the Stanford 
Research Systems SR1 Audio Analyzer. 
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Figure 9. Energy-time curve of the speaker under test (red) 
together with the corresponding gated impulse response (blue), 
as measured using a variable speed chirp. The target frequency 
spectrum of the chirp was USASI noise. A half-Hann window 
was used to calculate the ETC. 
 


