The SR830
Input Channel
The SR830 Lock-In Amplifier has differential inputs with
Extended Dynamic Reserve
The dynamic reserve of a lock-in amplifier at a given full-scale input voltage is the ratio (in dB) of the largest interfering signal to the full-scale input voltage. The largest interfering signal is defined as the amplitude of the largest signal at any frequency that can be applied to the input before the lock-in cannot measure a signal with its specified accuracy.
Conventional lock-in amplifiers use an analog demodulator to mix an input signal with a reference signal. Dynamic reserve is limited to about 60 dB, and these instruments suffer from poor stability, output drift, and excessive gain and phase error. Demodulation in the SR830
Digital Filtering
The digital signal processor also handles the task of output filtering, allowing time constants from 10 µsec to 30,000 s, with a choice of 6, 12, 18 and 24 dB/oct rolloff. For low frequency measurements (below 200 Hz), synchronous filters can be engaged to notch out multiples of the reference frequency. Since the harmonics of the reference have been eliminated (notably 2F), effective output filtering can be achieved with much shorter time constants.
Digital Phase Shifting
Analog phase shifting circuits have also been replaced with a DSP calculation. Phase is measured with 0.01° resolution, and the X and Y outputs are orthogonal to 0.001°.
Frequency Synthesizer
The built-in direct digital synthesis (DDS) source generates a very low distortion (-80 dBc) reference signal. Single frequency sine waves can be generated from 1 mHz to 102 kHz with 4½ digits of resolution. Both frequency and amplitude can be set from the front panel or from a computer. When using an external reference, the synthesized source is phase locked to the reference signal.
Auto Functions
Auto-functions allow parameters that are frequently adjusted to automatically be set by the instrument. Gain, phase, offset and dynamic reserve are each quickly optimized with a single key press. The offset and expand features are useful when examining small fluctuations in a measurement. The input signal is quickly nulled with the auto-offset function, and resolution is increased by expanding around the relative value by up to 100×. Harmonic detection is no longer limited to only the 2F component. Any harmonic (2F, 3F, ... nF) up to 102 kHz can now be measured without changing the reference frequency.
Analog Inputs and Outputs
The SR830 has a user-defined output for measuring X, R,
Internal Memory
The SR830 has two 16,000 point buffers to simultaneously record two measurements. Data is transferred from the buffers using the computer interfaces. A trigger input is also provided to externally synchronize data recording.
Easy Operation
The SR830